Hydroperoxy fatty acid cycling mediated by mitochondrial uncoupling protein UCP2.
نویسندگان
چکیده
Functional activation of mitochondrial uncoupling protein-2 (UCP2) is proposed to decrease reactive oxygen species production. Skulachev and Goglia (Skulachev, V. P., and Goglia, F. (2003) FASEB J. 17, 1585-1591) hypothesized that hydroperoxy fatty acid anions are translocated by UCPs but cannot flip-flop across the membrane. We found that the second aspect is otherwise; the addition of synthesized linoleic acid hydroperoxides (LAOOH, a mix of four isomers) caused a fast flip-flop-dependent acidification of liposomes, comparable with the linoleic acid (LA)-dependent acidification. Using Escherichia coli-expressed UCP2 reconstituted into liposomes we found that LAOOH induced purine nucleotide-sensitive H(+) uniport in UCP2-proteoliposomes with higher affinity than LA (K(m) values 97 microM for LAOOH and 275 microM for LA). In UCP2-proteoliposomes LAOOH also induced purine nucleotide-sensitive K(+) influx balanced by anionic charge transfer, indicating that LAOOH was also transported as an anion with higher affinity than linoleate anion, the K(m) values being 90 and 350 microM, respectively. These data suggest that hydroperoxy fatty acids are transported via UCP2 by a fatty acid cycling mechanism. This may alternatively explain the observed activation of UCP2 by the externally generated superoxide. The ability of LAOOH to induce UCP2-mediated H(+) uniport points to the essential role of superoxide reaction products, such as hydroperoxyl radical, hydroxyl radical, or peroxynitrite, initiating lipoperoxidation, the released products of which support the UCP2-mediated uncoupling and promote the feedback down-regulation of mitochondrial reactive oxygen species production.
منابع مشابه
Uncoupling protein-2 controls proliferation by promoting fatty acid oxidation and limiting glycolysis-derived pyruvate utilization.
Uncoupling protein-2 (UCP2) belongs to the mitochondrial carrier family and has been thought to be involved in suppressing mitochondrial ROS production through uncoupling mitochondrial respiration from ATP synthesis. However, we show here that loss of function of UCP2 does not result in a significant increase in ROS production or an increased propensity for cells to undergo senescence in cultur...
متن کاملActivating -6 Polyunsaturated Fatty Acids and Inhibitory Purine Nucleotides Are High Affinity Ligands for Novel Mitochondrial Uncoupling Proteins UCP2 and UCP3*
Human UCP2 and UCP3, expressed in yeast, were studied to establish their high affinity regulatory ligands. UCPn were reconstituted into liposomes and assayed for fatty acid (FA)-induced H efflux. All natural long chain FAs activated UCP2and UCP3-mediated H translocation. Coenzyme Q10 had no further significant activating effect. Evaluated parameters of FA activation (FA cycling) kinetics reveal...
متن کاملRegulation of insulin secretion by uncoupling protein.
UCPs (uncoupling proteins) can regulate cellular ATP production by uncoupling oxidative phosphorylation. UCP2 is expressed in islet beta-cells and its induction reduces glucose-stimulated insulin secretion. Under physiological conditions, superoxide, formed as a by-product of respiration, activates UCP2. This leads to reduced ATP production, which impairs closure of the ATP-dependent K+ channel...
متن کاملDecreased Uncoupling Protein 2 and 3 (UCP2 and UCP3) mRNA expression by endurance exercise training with and without chronic administration of nandrolone in rat heart
Introduction: The effect of regular exercise in decreasing the incidence of heart diseases is well known. The abuse of anabolic androgenic steroids (AAS) has been associated with cardiovascular disorders. Uncoupling proteins (UCPs) transport protons across the inner mitochondrial membrane thereby proton gradient can be diminished by the action of UCPs. This process will result in the uncoupl...
متن کاملActivating omega-6 polyunsaturated fatty acids and inhibitory purine nucleotides are high affinity ligands for novel mitochondrial uncoupling proteins UCP2 and UCP3.
UCP2 (the lowest Km values: 20 and 29 microm, respectively) for omega-6 polyunsaturated FAs (PUFAs), all-cis-8,11,14-eicosatrienoic and all-cis-6,9,12-octadecatrienoic acids, which are also the most potent agonists of the nuclear PPARbeta receptor in the activation of UCP2 transcription. omega-3 PUFA, cis-5,8,11,14,17-eicosapentaenoic acid had lower affinity (Km, 50 microm), although as an omeg...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 279 51 شماره
صفحات -
تاریخ انتشار 2004